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Abstract

Controlling Canards Using Ideas From The Theory of Mixed-Mode Oscillations

by

Joseph William Durham

Canards are special types of periodic orbits that are associated with a dramatic

change in amplitude and period due to a very small change in a parameter. Since

canards typically exist only for very small regions of parameter space, they are

extremely difficult to observe experimentally. In this thesis we present a contin-

uous feedback control mechanism which uses only the instantaneous position of

the system in phase space to tune a system parameter to a value for which a ca-

nard exists. This involves controlling a slow variable to drift toward the canard

parameter region, much as is the case for mixed-mode oscillations. We apply

this to tune the FitzHugh-Nagumo model to produce maximal canard orbits.

A system tuned to be at a parameter value where a canard exists could serve

as a sensor which could detect extremely small parameter changes. When the

controller is improperly configured, periodic or chaotic mixed-mode oscillations

are found. We also investigate the effects of noise on this control mechanism.
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Chapter 1

Introduction

Canards are periodic orbits for which the trajectory follows both attracting

and repelling slow manifolds. They are associated with a dramatic change in

amplitude and period over a very narrow interval of a parameter. Canards may

be present in singularly perturbed systems of ordinary differential equations: a

common scenario in which they arise is that a “small” stable periodic orbit is born

in a supercritical Hopf bifurcation and rapidly changes to a “large” relaxation

oscillation periodic orbit as a parameter is varied. Canards are the intermediate

periodic orbits between the small and large orbits. The shape of these periodic

orbits in phase space can resemble a duck, hence the name “canard,” the French

word for duck. Canards were first found in studies of the van der Pol system

[3, 10, 15], and have since been found and analyzed to varying degrees for a

variety of chemical, biological, and other systems [1, 2, 4, 8, 6, 7, 14, 24, 33,

34, 37, 38, 41, 42, 48, 45, 50, 52]. Because canards typically only exist for
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very small regions of parameter space, they are extremely difficult to observe

experimentally.

We present a control mechanism which tunes a system to be at a parame-

ter value for which a canard exists. This is a continuous feedback control law

which uses only the instantaneous position of the system in phase space, and is

conceptually similar to one approach used for tuning a system to be at a Hopf

bifurcation [43]. Our control mechanism exploits the relationship of canards to

mixed-mode oscillations (MMO), which are solutions consisting of sequences of

“small” and “large” orbits in phase space, as determined by whether the traced

orbits are “smaller” or “larger” than the corresponding canard solutions. MMO

have been found and analyzed for various systems; see [13, 18, 32, 39, 40, 46].

MMO occur, for example, for fast-slow dynamical systems when a variable on

average slowly drifts toward a transition from its present state (tracing a large or

small orbit) to a different state (tracing a small or large orbit). Most commonly,

such transitions occur periodically, giving MMO which can be characterized

by the repeating sequence in which the small and large orbits occur, although

chaotic MMO can also occur. Our control mechanism involves a slow variable

which similarly drifts toward the canard transition.

A system tuned to be at or near a parameter value for which a transition

occurs, such as a bifurcation or canard transition, can be used to sense parameter

changes: one type of behavior indicates the parameter changed in one direction,
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while another type of behavior indicates the parameter changed in the other

direction. For example, suppose a system is tuned to be at a parameter value at

which a supercritical Hopf bifurcation occurs, as in Fig. 1.1(a). (For methods

for tuning to a Hopf bifurcation, see [43, 35]; for applications to non-linear

amplification in hearing and hair cells in the cochlea, see [11, 16, 17, 36].) If the

parameter decreases a stable fixed point will be reached, while if the parameter

increases a stable periodic orbit will be reached. However, for Hopf bifurcations

the size of the periodic orbit shrinks to zero as bifurcation is approached; if it is

difficult to distinguish a fixed point from a small periodic orbit, such a system

would have trouble detecting small parameter changes.

On the other hand, suppose that a system is tuned to be at a parameter

value at which a subcritical Hopf bifurcation occurs, with the periodic orbit

gaining stability in a saddlenode bifurcation, as in Fig. 1.1(b). If the parameter

increases even a small amount, a large periodic orbit will be reached, which

might be easily distinguished from a stable fixed point. However, such a system

would not easily detect a subsequent small decrease in the parameter: hysteresis

makes the system stay on the stable periodic orbit branch. In order to “reset”

such a sensor, it would be necessary to decrease the parameter by a substantial

amount (past the saddlenode bifurcation), then re-tune the system to be at the

subcritical Hopf bifurcation.

In contrast, consider a system which is tuned to be at a parameter value for
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which a canard exists, as in Fig. 1.1(c). The presence of a “large” periodic orbit

indicates a positive change in the parameter, while the presence of a “small”

periodic orbit indicates a negative change in the parameter. Note that, because

of the nature of the canard transition, this will be true even for very small

changes in the parameters. If it is relatively easy to distinguish a large from

a small periodic orbit, such a sensor could detect extremely small parameter

changes while avoiding issues with hysteresis.

p.o.

f.p.

(a)

p.o.

f.p.

(b)

p.o.

f.p.

(c)

Figure 1.1: Bifurcation diagrams showing fixed point (f.p.) and periodic orbit (p.o.) branches
for (a) supercritical Hopf bifurcation, (b) subcritical Hopf bifurcation, (c) canard transition.
Solid (resp., dashed) lines indicate stable (resp., unstable) solutions. The parameter changes
along the horizontal axis, and the vertical axis is a measure of the size of the periodic orbit.

In the development of our control method, we begin in Section 1.1 by dis-
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cussing the presence of canards in the FitzHugh-Nagumo model, a prototypical

model for neural dynamics which will serve as the example throughout this thesis.

We derive an approximation for the location of canards in the FitzHugh-Nagumo

model using singular perturbation theory in Section 1.3. In Chapter 2, we de-

scribe the control mechanism which tunes our system to be at a parameter value

for which canards exist. Next, in Chapter 3, we determine how well the control

works for different parameters in the control law. This includes the result that

for certain parameters, the control law leads to MMO. We also consider this con-

trol mechanism for this system subjected to white noise in Section 3.2. While

we focus on the FitzHugh-Nagumo equations, we expect that the mechanism

which we describe will work for other systems, provided appropriate tuning of

the parameters in the control law is done.

1.1 Canard Basics

The system we consider is the FitzHugh-Nagumo (FHN) model of neuron

spiking behavior [22, 44, 31]. The dynamics are described by the differential

equations

v̇ = −w − v(v − 1)(v − a) + I ≡ f(v, w; I), (1.1)

ẇ = ǫ(v − γw) ≡ ǫg(v, w). (1.2)
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Figure 1.2: Bifurcation diagram from simulations of the FHN model, showing a stable fixed
point (f.p.) spawning a stable periodic orbit (p.o.) through a supercritical Hopf bifurcation
at I = 0.0553. The size of the periodic orbit is displayed using the maximum value of v

along the orbit. A canard transition occurs around I = 0.0568, where the size of the orbit
increases sharply over a very narrow range of I. Solid (respectively, dashed) lines represent
stable (respectively, unstable) solutions.

Here, ǫ ≪ 1 is a time-scale separation parameter, and v and w refer to voltage

and recovery variables, respectively. Following Brøns [5], we set a = 0.1, γ = 1,

and ǫ = 0.008. The parameter I represents an external current applied to the

model, and in this section we treat it as a bifurcation parameter. As shown in

Fig. 1.2, the FHN model with these parameters undergoes a supercritical Hopf

bifurcation around I = 0.0553, and shortly thereafter the amplitude and shape

of the stable periodic orbit changes dramatically over a very narrow range of I.

This narrow range of I is the canard region: a sample of canard periodic orbits

is shown in Fig. 1.3.
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(b)
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w

v

Figure 1.3: Stable periodic orbit evolution over a small range of parameter I in the FHN
model: (a) I = 0.056838, (b) I = 0.05683845, (c) I = 0.05683848, (d) I = 0.05683858, (e)
I = 0.05684. Here, and in later phase plane figures, the dashed line is the v-nullcline where
f(v, w) = 0.

The canard phenomenon can be understood as follows. The system has two

nullclines, a cubic v-nullcline where v̇ = f(v, w) = 0 and a linear w-nullcline

where ẇ = g(v, w) = 0. As the parameter I increases, the cubic v-nullcline

translates upwards in w, causing the intersection of the two nullclines to translate

along the v-nullcline towards higher values of v. The Hopf bifurcation shown in

Fig. 1.2 occurs shortly after the w-nullcline passes through the local minimum of

the v-nullcline, as demonstrated in Fig. 1.4. The canard region exists in between

the Hopf bifurcation and the large stable periodic orbit in Fig. 1.4(b).

Time-scale separation plays a critical role in canard system dynamics. For

the FHN model, the tiny parameter ǫ causes the w dynamics to be orders of

magnitude slower than the v dynamics when the system is away from the v-

nullcline. When trajectories approach the v-nullcline, the v dynamics shrink
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v

w

v̇ = 0

v̇ < 0

v̇ > 0

ẇ > 0

ẇ = 0

ẇ < 0
w

v

(a) stable fixed point (b) unstable fixed point, stable periodic orbit

Figure 1.4: Two different values of I producing different dynamics for the system. In (a), a
lower value of I produces a single stable fixed point. In (b), a higher value of I produces a
large stable periodic orbit. The intersection of the v and w-nullclines has shifted from the left
side of the local minimum of the v-nullcline to the right side.

towards 0 and the system operates at the slower time-scale of the w dynamics.

In Fig. 1.4 double arrows indicate the system is evolving rapidly, while the slower

dynamics along the v-nullcline are represented with a single arrow. For canard

trajectories like (c) and (d) in Fig. 1.3, the system spends most of its time near

the v-nullcline, while the traversal across the top happens very quickly.

In order to predict the location for the canard region, we first need to establish

the relationship between nullclines and slow manifolds for this system. If ǫ is

set equal to zero, then ẇ = 0, and the v-nullcline is a curve of fixed points and

is normally hyperbolic on the pieces for which its slope is bounded away from

zero, i.e., away from its local minimum and local maximum when plotted in the

(v, w) phase space (see Fig. 1.3). For ǫ = 0, the “left” and “right” parts of the

v-nullcline are found to be stable to transverse perturbations, while the “middle”

part is found to be unstable to transverse perturbations.
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Invariant manifold theorems imply that, for ǫ sufficiently small, invariant

manifolds persist within O(ǫ) of these normally hyperbolic pieces of the v-

nullcline, with the manifolds inheriting their normal stability properties from

the stability properties of the pieces of the v-nullcline [19, 20, 53]. There will

thus be a slow manifold MS, with stable foliation, within O(ǫ) of the “left” part

of the v-nullcline, a different slow manifold, with stable foliation, within O(ǫ) of

the “right” part of the v-nullcline, and a slow manifold MU , with unstable folia-

tion, within O(ǫ) of the “middle” part of the v-nullcline. The manifolds MS and

MU can be extended beyond the local minimum and local maximum according

to the flow, but the extensions may leave an O(ǫ) distance of the v-nullcline, and

may also lose their normal stability properties.

Generically, the distance between MS and MU is nonzero near the local min-

imum of the v-nullcline. This distance changes as parameters are varied. For

the FHN model, a “small” stable periodic orbit is born in a supercritical Hopf

bifurcation, with the manifolds as sketched in Fig. 1.5(a). As I is increased from

the Hopf bifurcation point, the relative position of the manifolds switches to the

case sketched in Fig. 1.5(b). For particular parameters the manifolds MS and

MU connect smoothly; for parameters O
(

e−K/ǫ
)

close to this for some K > 0,

the periodic orbit is called a canard, and it follows MU for a substantial dis-

tance [15, 34]. In the following sections we will first calculate the location of the

Hopf bifurcation point, and then, using this connecting manifolds framework,

9



(a) (b)
MS

MUMU

MS

Figure 1.5: The two generic situations for the relative positions of the slow manifolds MS and
MU near the local minimum of the v-nullcline. A trajectory follows MS , and after passing
near the local minimum of the v-nullcline either (a) returns quickly to a neighborhood of MS ,
or (b) undergoes a large excursion before returning to a neighborhood of MS .

the canard region.

1.2 Predicting parameter values at which Hopf

bifurcation occurs

To determine the location of the supercritical Hopf bifurcation for the FHN

model, we will first located the critical point (vcp, wcp) where

f(vcp, wcp; I) = g(vcp, wcp) = 0. (1.3)

Solving this system yields equations for vcp and wcp in terms of I, γ, and a, that

we will omit. The Hopf bifurcation occurs when the eigenvalues of the system

linearized about this critical point cross the imaginary axis with non-zero speed.

Linearizing the FHN model about the critical point yields the following Jacobian

matrix:

J(I, ǫ) =









∂f
∂v

∂f
∂w

ǫ∂g
∂v

ǫ ∂g
∂w









(1.4)
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where all derivatives are evaluated at (vcp, wcp). The trace of the Jacobian matrix

determines the real part of the eigenvalues of the linearized system. Solving for

the value of I where tr (J(I, ǫ)) = 0 for our parameters yields the location of the

Hopf bifurcation, IH :

IH ≈ 0.05527. (1.5)

This result matches the value found using Eq. 3.10 of Brøns [6]. For this to be

a Hopf bifurcation it must also fulfill the following conditions:

det (J(IH , ǫ)) > 0, (1.6)

∂tr (J(IH , ǫ))

∂I
6= 0. (1.7)

Both of these conditions hold at IH for ǫ = 0.008.

1.3 Predicting parameter values at which ca-

nards occur

Singular perturbation theory can be used to predict the parameter values at

which manifolds MS and MU connect to produce a canard trajectory [7, 41, 6].

To locate the canard point IC , we expand the parameter I in powers of ǫ about

a fixed value I0 to be defined below:

IC(ǫ) = I0 + ǫI1 + h.o.t. (1.8)
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where h.o.t. stand for higher order terms in ǫ. We seek an approximation to the

connected canard manifold, which defines w as a function of v and I:

w(v; I) = w0(v; I0) + ǫw1(v; I0, I1) + h.o.t.. (1.9)

Using the expansions for I and w, we can now also expand Eqs. 1.1,1.2:

f(v, w; I) = f0(v; I0) + ǫf1(v; I0, I1) + h.o.t., (1.10)

g(v, w) = g0(v; I0) + ǫg1(v; I0, I1) + h.o.t. (1.11)

Notice that the w dependence of both f and g has been removed, as Eq. 1.9

defines w as a function of v and I. Combining Eqs. 1.1,1.2 yields

f(v, w; I)
dw

dv
= ǫg(v, w; I). (1.12)

Using the approximations for f and g from Eqs. 1.10,1.11, we next examine

Eq. 1.12 at order O(ǫ0):

f0(v; I0)
dw0(v; I0)

dv
= 0. (1.13)

For a non-trivial w, this means:

f0(v; I0) ≡ −w0(v; I0) − v(v − 1)(v − a) + I0 = 0. (1.14)

Eq. 1.14 defines w0(v; I0) to be the v-nullcline for I = I0.

Next, examining Eq. 1.12 at order O(ǫ1) yields

f1(v; I0, I1)
dw0(v; I0)

dv
+ f0(v; I0)

dw1(v; I0, I1)

dv
= g0(v; I0). (1.15)
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By Eq. 1.14 f0(v; I0) = 0, so Eq. 1.15 produces an equation for f1(v; I0, I1):

f1(v; I0, I1) =
g0(v; I0)

w′

0(v; I0)
(1.16)

where the prime denotes differentiation with respect to v. Since w0(v; I0) is the

cubic v-nullcline, there are values of v where w′

0(v; I0) = 0. Let vi be the local

minimum of the v-nullcline, which for a = 0.1 occurs at

vi = (1 + a −
√

1 − a + a2)/3 ≈ 0.048687. (1.17)

For the ǫ expansion of I to remain defined (ie, so that f1 remains O(1)), g0 must

→ 0 as v → vi, where

g0(v; I0) = v − γw0(v; I0). (1.18)

For g0 to → 0 as v → vi, w0 must → vi/γ. Adding this constraint to Eq. 1.14

determines the value of I0:

I0 =
vi

γ
+ vi(vi − 1)(vi − a) ≈ 0.051064. (1.19)

It is worth noting that I0 is the value of I where the w-nullcline passes through

the minimum of the v-nullcline and a decent zeroth order approximation to the

location of the Hopf bifurcation point.

For future use, we will now derive expressions for w1(v; I0, I1) and w′

1(v; I0, I1)

in terms of things we know. First, we can derive a second equation for f1(v; I0, I1)

by expanding the definition of f in Eq. 1.1 to O(ǫ1):

f1(v; I0, I1) = −w1(v; I0, I1) + I1 (1.20)

13



Rearranging and substituting for f1 using Eq. 1.16 yields

w1(v; I0, I1) = − g0(v; I0)

w′

0(v; I0, )
+ I1. (1.21)

Differentiating yields an equation for w′

1:

w′

1(v; I0, I1) = −g′

0(v; I0)w
′

0(v; I0, ) − g0(v; I0)w
′′

0(v; I0, )

[w′

0(v; I0, )]2
. (1.22)

With these equations in place, we will now continue on to examine Eq. 1.12

at O(ǫ2):

f2w
′

0 + f1w
′

1 = g1. (1.23)

Rearranging to isolate f2 yields

f2 =
g1 − f1w

′

1

w′

0

. (1.24)

Again, since f must remain bounded, as w′

0 → 0 so must (g1 − f1w
′

1). Using

Eqs. 1.16,1.21,1.22, we can now plug in for g1, f1, and w′

1, yielding a definition

for I1 in terms of known quantities:

g1 − f1w
′

1 = −γw1 +
g0

w′

0

g′

0w
′

0 − g0w
′′

0

(w′

0)
2

(1.25)

= −γ(− g0

w′

0

+ I1) +
g0g

′

0w
′

0 − g2
0w

′′

0

(w′

0)
3

.

Eq. 1.25 must → 0 when w′

0 → 0, ie as v → vi. The only term which is not

already defined is I1, so we will isolate this term:

I1 = lim
v→vi

(

g0g
′

0w
′

0 + γg0(w
′

0)
2 − g2

0w
′′

0

γ(w′

0)
3

)

, (1.26)
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where all derivatives are evaluated at v = vi. As v → vi, both the numerator

and denominator of Eq. 1.26 go to 0 since both g0 and w′

0 go to 0. To find the

value of I1 in the limit as v → vi we apply L’Hospital’s rule three times, which

using g0 → 0 and w′

0 → 0 yields

I1 = lim
v→vi

(

g′

0(g
′′

0w
′′

0 + 2γ(w′′

0)
2) − (g′

0)
2w

(3)
0

2γ(w′′

0)
3

)

≈ 0.69405. (1.27)

Plugging this value into Eq. 1.8, produces the following approximation for

the location of the canard point:

IC ≈ I0 + ǫI1 = 0.05662. (1.28)

This result is equivalent to the predicted canard value from (3.23) of Brøns [6].

IC is accurate to first order in ǫ, and matches the numerical result shown in

Fig. 1.2 to that order.
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Chapter 2

Control Method

Our goal is to design a control mechanism that steers the FHN model to the

parameter values at which canards occur, without precise foreknowledge of this

value. Since I is the bifurcation parameter in Eqs. 1.1,1.2, it makes a natural

control variable as well. Based on Fig. 1.2, if the periodic orbits are large, I

should be decreased and if the periodic orbits are small, I should be increased.

Our control strategy for I follows this blueprint. If I is allowed to drift back-

and-forth, this strategy would produce MMO, but when properly set up it will

pick out the mid-size, canard orbits.

We choose to use continuous feedback control based on the position of the

system in phase space, similar to the approach of Moreau and Sontag for tuning

to a Hopf bifurcation [43]. The local minimum of the v-nullcline is the base

point for our measurements and we construct a control circle around this point

to determine whether trajectories are instantaneously small or large. When a

16



trajectory is inside the circle, it is considered small and I should be increased.

The opposite is true when a trajectory is outside the circle. I will cycle over a

small range when a trajectory balances the effects of sometimes being inside and

sometimes outside the circle.

To include this control strategy in the FHN model, we augment Eqs. 1.1,1.2

with the following differential equation for I:

İ = c(r0 − r). (2.1)

The new variable r =
√

(v − vi)2 + (w − wi)2 is the instantaneous Euclidean

distance from the local minimum of the v-nullcline. The parameters c and r0

determine the control strength and radius of the control circle, respectively, and

will be tuned to produce a “good” canard. This control strategy is memoryless,

as it depends only on the instantaneous position in phase space, and also does

not require foreknowledge of the canard point parameter value. That being said,

for this control strategy to work the system must begin in an oscillatory region

of parameter space, but can start with parameters on either side of the canard

point. This control strategy also requires approximate knowledge of the size of

periodic orbits on either side of the canard point; setting r0 to one third of the

distance from the local minimum of the v-nullcline to the local maximum is a

reasonable starting point.

It is worth noting that changes in I cause the intersection of the two null-

clines to move, and thus the exact position of (vi, wi) to change. However, as
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the changes in I between the Hopf bifurcation point and the canard region are

approximately 0.015 (see Fig. 1.2), the changes to vi and wi, and thus r over this

range are of the same small order. In the following we have fixed vi = wi = 0.05.

As we will discuss in Section 3.1, the control method is robust to far larger

changes in the position of the control circle than result from these approxima-

tions for vi and wi.

2.1 Comparing the Effectiveness of Strategies

To compare the effectiveness of this control strategy for various values of c

and r0, we would like to measure the distance over which the trajectory remains

in the neighborhood of the slow manifold MU . This manifold is within O(ǫ) of the

middle portion of the v-nullcline. This implies that the slope of MU must be close

to that of v-nullcline. When a trajectory departs from a neighborhood of MU , it

does so abruptly making a sharp turn with a large change in slope. With these

considerations in mind, our distance measurement begins when the trajectory

passes the local minimum of the v-nullcline. We consider the trajectory to have

departed the neighborhood of MU when its slope differs by 0.09 from that of the

v-nullcline with the same value of v. This value, which is an order of magnitude

larger than ǫ, was chosen so that the trajectory with the longest measurement

has a large change in slope just before the local maximum of the v-nullcline.

Fig. 2.1 shows several trajectories and how our method classifies their distance.

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

w

v

Figure 2.1: Demonstration of how our distance measure classifies several trajectories. The
dashed line is the v-nullcline, within O(ǫ) of MU . The thicker part of the trajectories count
towards the distance following MU , the thinner pieces do not. Here, the longest distance is
approximately 0.6, the shortest 0.15.
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We also tried other methods for measuring the distance near MU . Our first

attempt was to place an envelope around the v-nullcline and stop our distance

measurement when the trajectory left this envelope. While this strategy was

fairly effective, the maximal canard trajectory naturally evolves away from the

v-nullcline at higher values of v. To properly capture the length of this trajectory

requires a fairly generous envelope that counts the initial sections of trajectories

that depart from the manifold early. Using a slope based measure allows a

gentle progression away from the manifold, while correctly handling sharply

divergent trajectories. In principle, it would also be possible to calculate a direct

approximation to MU . However, the middle section of the v-nullcline is an O(ǫ)

approximation of MU and proved sufficient for our treatment.
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Chapter 3

Results

The results of a two parameter study of c and r0 using the distance measure

from Section 2.1 are shown in Fig. 3.1, where we average over multiple visits

near MU to account for the possibility of MMO, as described below. Using other

values for this slope difference threshold results in a slightly different specific

largest canard, but the results are very similar. As r0 increases from 0.15, then

distance over which trajectories remain in the neighborhood of MU generally

increases until reaching its peak around r0 = 0.234. The longest canard orbit in

our study occurs for c = 1× 10−8 and r0 = 0.234, and is shown in Fig. 3.2. Just

above this value of r0, the length of trajectories drops sharply as the trajectories

turn off a shorter distance up MU . As the two parameter study shows, using

a smaller value of c produces longer tracking of MU and thus more canard-like

shapes. Using values of c below 1 × 10−8 does not significantly improve the

distance measure.
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Figure 3.1: Contour plot of the average distance the trajectories remain in the neighborhood
of MU after transients have died out. Average is taken over at least 40 successive visits near
MU .
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The value of c must be smaller than 1 × 10−4 to tune the system to the

canard region. As demonstrated in Fig. 1.3, the canard region in I is smaller

than 1×10−5, with maximal canards in a range of I several orders of magnitude

smaller. Our choice of memoryless, continuous control also mandates very small

corrections. This size constraint on c effectively creates three time scales for

the system 1.1,1.2,2.1, as 1 ≫ ǫ ≫ c. Over the maximal canard trajectory,

the control parameter I is never stationary but enters into a repeating cycle

as shown in Fig. 3.3. As the trajectory passes near the local minimum of the

v-nullcline, it is in the center of the control circle and I increases most rapidly.

The trajectory then passes out of the circle on its way up MU , and I starts to

decrease by larger amounts as the orbit moves through the canard’s “head.” On

its return to MS, the trajectory briefly passes through the top of the control

circle, resulting in the short reversal in Fig. 3.3. As this occurs away from the

v-nullcline, the trajectory is moving quite rapidly, keeping the reversal small.

3.0.1 Mixed-Mode Oscillations and Chaos

While the canard trajectory shown in Fig. 3.2 traces a single orbit each time

around, this is not always the case. For c = 1 × 10−8, we also found MMO

with one large and one small orbit, as shown in Fig. 3.4. These MMO occur

when the control strategy over-corrects for the value of I. When the trajectory

departs the local minimum of the v-nullcline headed for a large orbit, it spends
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Figure 3.2: This canard trajectory, produced using control with c = 1 × 10−8 and r0 = 0.234,
has the longest distance measure along MU . The axes are not square, so the dot-dashed control
circle appears elliptical.
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Figure 3.3: Evolution of I for the trajectory in Fig. 3.2.
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Figure 3.4: Bifurcation diagram for c = 1 × 10−8 showing peak values of v, generated by
adiabatically increasing the value of r0, omitting transients. There is a period two bubble
corresponding to a MMO with one small and one large orbit as r is swept from 0.18 to 0.25.
The maximal canard has vpeak ≈ 0.65.

a substantial amount of time outside the control circle, which lowers the value

of I. When the trajectory re-enters the control circle, I begins to increase again.

If the control circle is too small and/or the control strength c too large, then

when the trajectory departs again it will have over-corrected the value of I and

lead to a small orbit. The trajectory then spends a substantial amount of time

inside the control circle, which increases the value of I and can lead to another

large orbit.

When c is increased, the window of MMO expands. Figure 3.5 shows bifur-

cation diagrams for c = 2 × 10−8, 5 × 10−8, 1 × 10−7. For all three of these, the

period doubling “bubble” in Fig. 3.4 expands into cascades of period doubling
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bifurcations, that leads to chaotic MMO. As c increases, the width of the region

with complex behavior broadens as the propensity for over-correction in I in-

creases. The chaotic region is broken up by windows of MMO periodic orbits,

with the number of MMO windows increasing with c. Each of these windows

corresponds to a different type of MMO, beginning with 1n orbits (Ls means s

small orbits for every L large orbits) for small values of r0, transition through

11 in the middle of the chaotic region, and end as n1 orbits, as can be seen best

in Fig. 3.5(c). A similar chaotic MMO bifurcation structure has been observed

experimentally for the Belousov-Zhabotinski (BZ) reaction in [28], as well as an

electrochemical system in [49]. These results are also very reminiscent of results

in Petrov et al [46].

Figure 3.6 shows the chaotic trajectory for c = 1 × 10−7 and r0 = 0.17 with

the associated time series for I. In Fig. 3.7, the (v, w)-phase plane is expanded

with a third dimension for the control variable I, creating a three dimensional

view of the chaotic trajectory in Fig. 3.6. The v-nullcline is expanded into the

I-dimension to form a two dimensional folded surface S, with the line of local

minima of the v-nullcline now referred to as the fold-line F . This chaotic behavior

is not the product of integration error or other noise, as a map from the max

value of v from one orbit to the next is distinctly one dimensional, as shown in

Fig. 3.8.
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Figure 3.5: Bifurcation diagram, as in Fig. 3.4, for (a) c = 2 × 10−8, (b) c = 5 × 10−8, (c)
c = 1 × 10−7, all showing period doubling cascades to chaos and various periodic windows
corresponding to periodic MMO. The maximal canard has vpeak ≈ 0.65.
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Figure 3.6: Control with c = 1 × 10−7 and r0 = 0.17 produces a chaotic MMO.
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Figure 3.7: Three dimensional representation of the chaotic trajectory from Fig. 3.6, with the
(v, w)-phase plane augmented with a dimension for I. The cubic v-nullcline is now the two
dimensional surface S with fold-line F .
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Figure 3.8: Map of peak value of v in Fig. 3.6 versus the previous peak. This one dimensional
map shows that the spread of orbits in Fig. 3.6 is due to chaos.
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3.1 Robustness

We studied the effects of moving the control circle so it was not centered at

(0.05, 0.05), the approximate local minimum of the v-nullcline. The control strat-

egy still functions when the circle is displaced by less than half of r0, although

the specific best canard or MMO behavior does change when the circle moves.

Figure 3.9 shows results for two parameter study like Fig. 3.1 but with the con-

trol circle displaced by 0.076 to (0.12, 0.08). This plot is almost indistinguishable

from that for the centered circle, with only small differences in structure.

These results indicate that the control strategy is robust to small errors or

changes in vi and wi, and effective without precise positioning of the circle.

However, if the circle is displaced so it no longer contains the local minimum of

the v-nullcline, the controller cannot work.

Our control method is also robust to large, but infrequent, changes in system

properties. For the FHN model, we use steps in γ to simulate these sudden

changes. As shown in Fig. 3.10(a), the control method is capable of responding to

these changes and locating the new canard region. The time it takes the system

to reach the canard window depends on the value of c, with larger values locating

the canard window more quickly while smaller values find it more precisely. To

reach the canard region both quickly and precisely, we developed a strategy for

adjusting control strength c depending on past performance of I.

Essentially, if I has settled in and continues oscillating over the same re-
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Figure 3.9: Contour plot with the same setup as Fig. 3.1 except that the center of the control
circle has been displaced to (0.12, 0.08). The two contours are nearly identical despite the
translated control circle.
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Figure 3.10: (a) Control variable I first locates initial canard window for γ = 1.0. After it
achieves a lock, γ is reduced to 0.985 and I then tunes to the new canard window at I =
0.05764, as confirmed by simulations. (b) The control strength c is varied based on recent
history of I.

gion, c is reduced to more accurately determine the canard window, as shown

in Fig. 3.10(b). If I is moving in one direction for a sufficiently long time, c

is increased to reduce the time until the new canard window is acquired. This

adaptation of c requires knowledge of past values of I, but greatly improves the

settling time for smaller values of c. In addition, this adaptation mechanism al-

lows for rapid, precise convergence on the canard region from an initial condition

to an unknown value of IC .

32



3.2 Simulations With Noise

The high precision required to achieve tuning to a specific canard orbit raises

the question of whether the method will work in the presence of noise. One

potential source of noise for the FHN neuron model is a noisy external current,

which would directly affect the v equation. Considering Gaussian white noise,

Eqs. 1.1,1.2,2.1 are rewritten

v̇ = −w − v(v − 1)(v − a) + I +
√

2Dη(t), (3.1)

ẇ = ǫ(v − γw), (3.2)

İ = c(r0 − r) (3.3)

where η(t) represents Gaussian delta-correlated noise with zero mean and unit

variance that enters the system continuously.

3.2.1 Stochastic Integration method

To simulate the response of our controlled FHN model to white noise, we use

a fixed step size, fourth-order Runge-Kutta method adapted for noise from [27].

Consider the general multi-dimensional stochastic system

ẏ = f(y) +
√

2Dη(t), (3.4)

where y is the state vector for the system and
[√

2Dη(t)
]

i
=

√
2Diηi(t) with

each ηi(t) representing an independent Gaussian delta-correlated noise with zero
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mean and unit variance. Let y0 be the state the system at time t0, and f(y0)

the associated derivative in the absence of noise. The approximate state at time

t0 + h is then given by:

Y1 = f(y0), (3.5)

Y2 = f(y0 +
h

2
Y1 +

√
hDη(t2)), (3.6)

Y3 = f(y0 +
h

2
Y2 +

√
hDη(t3)), (3.7)

Y4 = f(y0 + hY3 +
√

hDη(t4)), (3.8)

y(t0 + h) ≈ y0 +
h

6
(Y1 + 2Y2 + 2Y3 + Y4) +

√
hDη(t0 + h). (3.9)

The different t values used for η(t) are intended just to indicate that different

values of the random noise are used for each expression. See Appendix A for the

MATLAB code used for these stochastic simulations.

To select the time step for stochastic simulations of the FHN model, we

first simulated Eqns. 1.1,1.2,2.1 without noise using MATLAB’s fourth-order

Runge-Kutta solver, ode45. Setting the error tolerances to 1×10−10 allowed the

system to settle into the maximal canard orbit. After these noise-less simulations

completed, we found the smallest step-size these simulations had required and

used a slightly smaller value of 0.1 seconds for the fixed time step in our stochastic

simulations.
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3.2.2 Results With Noise

Under continuous noise, our controller is able to approach I values close to

the canard transition, but is unable to produce canard-shaped orbits. Figure 3.11

shows what happens to the maximal canard in Fig. 3.2 when a small amount

of noise is injected. To achieve a canard shape, the trajectory must follow MU .

Even small amplitudes of white noise cause the trajectory to depart from MU

and the control logic is simply not set up to offset these local effects. Instead of

canard shapes, Eqs. 3.1,3.2,3.3 produce noisy MMO even for tiny noise strengths.

This is reminiscent of the noise-induced spiking presented in Makarov, Nekorkin,

and Velarde [37]. For our system, larger (resp., smaller) values of noise strength

D move the fork in Fig. 3.11 lower (resp., higher) on MU . It is possible to produce

similar results to those of Makarov et al using our method. Choose a small value

for r0 (like 0.12) and, in the absence of noise, the control will produce small

periodic orbits. With noise, the system will sporadically produce large orbits.

To tune to maximal canard orbits in the presence of noise, perhaps an alter-

native control method could be developed based on deviation of the orbit from

MU . This would have the potential to overcome continuous noise, but would

require either specific prior information about the canard system or an adaptive

memory. The approximation to MU would have to be known to high precision

and the controller sufficiently powerful to counter the natural deviation from the

unstable manifold.
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Figure 3.11: Noisy MMO produced using c = 1 × 10−8, r0 = 0.234 and noise strength D =
1 × 10−11. This is the same controller that produced the best canard in Fig. 3.2. With noise,
the controller can only find the general location of the canard window; the continuous noise
precludes actual canard trajectories.
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Chapter 4

Conclusion

We have demonstrated a novel technique for inducing the FitzHugh-Nagumo

(FHN) model to operate at a canard point. After the addition of a differen-

tial equation regulating the parameter I, the model self-tunes to operate in the

canard region. When properly tuned, our continuous, memoryless method pro-

duces repeated maximal canard trajectories. Mixed-mode oscillations (MMO),

including chaotic trajectories, were observed for suboptimal control setups. While

our method can relocate the precise canard region when one of the parameters

in the FHN model changes, it can only find the general vicinity of the canard

region when subjected to continuous white noise. If noise could be sufficiently

minimized, a sensor operating at the canard point could detect minute changes

to the operating parameters of the system without the hysteresis issues associ-

ated with operating at a subcritical Hopf bifurcation. We note that this control

strategy will not stabilize unstable canards, such as a branch of periodic orbits
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arising from a subcritical Hopf bifurcation [42].

In future work, several enhancements to the controller could prove beneficial.

Adding an integral term to Eq. 2.1 could enable the system to more quickly locate

the canard orbit when initialized far from the canard region. Adding damping

might achieve a similar result and reduce the prevalence of MMO by shrinking

the oscillations in I for larger values of c. Several changes would be necessary to

counteract continuous white noise, but a controller that estimated the location of

MU and counteracted deviations away from that manifold might prove successful.

It would also be interesting to investigate generalities of this control strategy for

higher dimensional systems exhibiting canards, using a control cylinder with axis

along the fold line or a hypersphere.
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Appendix A

Appendix

The following MATLAB function performs stochastic integration using a

fourth order Runge-Kutta method.

function [PlotTime,PlotVars] = RK4wN(InitialConds,tSpan,

h,saveInc,noiseStrength,funcHandle)

% Input variables:

% InitialConds: Vector of initial states for all

% variables in question

% tSpan: [startTime, endTime]

% h: Size of fixed time steps

% saveInc: Save a point for plotting every saveInc steps

% noiseStrength: magnitude of noise to subject simulation to

% funcHandle: Handle for a vector function that,

% given inputs [State], returns vector of first

% derivatives for each state

% Output variables:

% PlotTime: Vector of timesteps (to ease plotting)

% PlotVars: Matrix with states values at each timestep,

% final value is final state

Time = tSpan(1);

State = InitialConds;

% Filling out defined length arrays is far faster

% than dynamic resizing
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numSavePts = ceil(tSpan(2)/(h*saveInc) + 1);

PlotTime = zeros(numSavePts,1);

PlotVars = zeros(numSavePts,length(InitialConds));

PlotTime(1,1) = tSpan(1);

PlotVars(1,:) = InitialConds;

numPoints = 0;

saveIndex = 1;

% Loop through time steps

while( Time < tSpan(2) - 1E-8 )

% Find next state, increment time

[State,Time] = TimeStepper(State,Time,h,noiseStrength,

funcHandle);

% Save values for plotting

if( mod( numPoints, saveInc ) == 0 )

saveIndex = saveIndex + 1;

PlotTime(saveIndex) = Time;

PlotVars(saveIndex,:) = State;

end

numPoints = numPoints + 1;

end

FinalState = State;

function [Final,FinalTime] = TimeStepper(Initial,Time,h,

noiseStrength,funcHandle)

% Find next state using user supplied function

Y1 = funcHandle(Initial);

Y2 = funcHandle(Initial + h/2*Y1 +

sqrt(noiseStrength*h)*randn(1));

Y3 = funcHandle(Initial + h/2*Y2 +

sqrt(noiseStrength*h)*randn(1));

Y4 = funcHandle(Initial + h*Y3 +

sqrt(noiseStrength*h)*randn(1));

Final = Initial + h/6*(Y1+2*Y2+2*Y3+Y4) +

sqrt(noiseStrength*h)*randn(1);

FinalTime = Time + h;
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